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Abstract

The Discrete Element Method (DEM) is a numerical method devised to model the behaviour of particle assemblies.

However in order to simulate entire engineering structures, which may involve millions of particles, the computing

power has to increase as the DEM is computationally extremely expensive.

A dedicated hardware architecture, implemented on a reconfigurable computing platform based on a Field Pro-

grammable Gate Array (FPGA) is presented in this paper. The main computational tasks are fully overlapped using

domain decomposition techniques, and the lower level parallelism is also exploited by using concurrent arithmetic

operations. A speedup of a factor of 30 could be observed compared to an optimised software simulator running on a 1

GHz Pentium III PC with 1.3 Gbytes of RAM for 2-D particles assemblies ranging from 25,000 to 200,000 particles.

The scalability of this design was tested on a multi-FPGA system, allowing the complete overlap of communication and

computation for two FPGA boards working in parallel, achieving a speedup factor of almost 60.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The Discrete Element Method (DEM) is a numerical

method to model the behaviour of particle assemblies.

They can be bonded together to represent rock or re-

mained unbonded to represent soil. Bonded together

they can represent entire structures, such as dams or

bridges. As the process is explicit, the time step must be

limited to a very small value, thus making the DEM

extremely computationally expensive. Its wide-spread

use is therefore hampered, though the amount of par-

allelism involved in it is also extraordinarily high.

Many attempts have been made, with varying degrees

of success, to run the DEM on multiprocessor systems.
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Linear speedup with the number of processors would be

expected, but synchronisation and communication

overheads as well as load balancing problems cause

these systems to underachieve their expectations of lin-

ear speedup. Transputer systems [1], CrayT3D [2]

implementations, Swiss-T0-Dual machines [3], Linux

clusters [4] are just some of the multiprocessor systems in

which the DEM was implemented. Other ways to allow

the simulation of realistic particle problems are therefore

needed.

As the complexity of Field Programmable Gate Ar-

rays (FPGAs) is continuously increasing, and entire

system can now be implemented on them with minimal

off-chip resources, they provide an ideal platform for

hardware acceleration. They can be configured to form

co-processors to perform custom hardware acceleration.

For the right type of application they can rival expensive
ed.
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multi-processor systems that are normally used for such

purposes. FPGAs thus open a new window to low cost

hardware acceleration.
2. The Discrete Element Method

Cundall and his co-worker Strack [5,6] developed the

Discrete Element Method (DEM) in the seventies to

model the behaviour of granular materials. The main

operations of DEM to be performed in each time step

are:

(1) Check which particles are in contact with one an-

other

(2) Increment the inter-particle forces

(3) Update the co-ordinate and velocity of each particle

Furthermore, the list of which particles are in contact

must be re-computed for each step. As the process is

explicit, the time step must be limited to a very small

value. It is in the order of milliseconds for the stiffness

and density of a typical material. Although using scaled

stiffness or density can change its time-step value, this

would not be feasible and many time steps would still be

needed if the dynamic behaviour of the system were

required to be modelled accurately. This restriction

makes the DEM extremely computationally expensive.

Nevertheless this method has been widely used in many

applications such as silo flows [1], rock fracture and the

collapse of buildings [2].

The computational effort of the three main steps in-

volved in the DEM is given in the following section for a

2-D case.

2.1. Contact check

In order to detect if two particles are in contact the

following equation has to be solved for circular discs in

2-D:

Dn ¼ R1 þ R2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
> 0 ð1Þ

Here xi and yi are the co-ordinates of each particle and

R1 and R2 are the respective radii, D is the distance be-

tween the centroids and Dn the amount of overlapping

of the two particles in contact. The contact check is

computationally expensive, as a square root operation

and two multiplications are involved in Eq. (1).
Table 1

Arithmetic operations for the contact check

Additions and subtra

Number of arithmetic operations 5
The computational operations required to detect

which particles are in contact with each other is the most

time consuming operation of all three. Identification of

which balls are in contact requires that each possible

pairing of balls be examined. For N particles this would

require OðN 2Þ operations. Thus, for large problem sizes,

contact identification dominates the complexity of the

problem. Dividing the domain up into cells using the

domain decomposition method can alleviate this [6].

Each particle is tagged as belonging to a particular cell,

and it will only be checked for contacts with particles

within the same cell and adjacent cells. If there are c

numbers of particles per cell, the execution time is then

proportional to N
c Oðc2Þ.

Occasionally a particle may transition from one cell

to another, or may straddle the boundary between two

cells. A new sub-step has to be included in the data flow

of the DEM, as reboxing of the particles is now neces-

sary whenever a particle moves to an adjacent box.

The number of arithmetic operations needed to

compute Eq. (1) is given in Table 1.

2.2. Inter-particle forces increment

Once the contact list for a particle has been estab-

lished, the total force acting on it can be determined. For

every contact identified between two particles, the

resulting force can be calculated once the force–dis-

placement law is known. For this study, a linear elastic

force–displacement law is adopted. This is not exactly

correct in reality, as the contact area will increase with

the amount of contact thus rendering the force–dis-

placement law non-linear. Although many advanced

interaction laws such as Hertzian have been proposed

[7], they only add to the complexity of the calculation

and do not alter substantially the arguments put forward

in this paper.

On the other hand, the model used throughout this

paper considers a granular medium with all of its par-

ticles having identical radius R. This greatly simplifies

the Hardware implementation of the algorithm, because

it means that for a 2-D implementation, a particle can

have a maximum of six other particles in contact with

itself.

Having particles of the same radius R would mean

that the maximum number of operations for contact

checking needed would be Oð6NÞ, for the worst case in

which all the particles have the maximum number of

particles in contact with each one of them.
ctions Multiplications Square root

2 1



Table 2

Arithmetic operations for the force update function

Additions and subtractions Multiplications Divisions Square roots

Number of arithmetic operations 20 18 2 1

Table 3

Arithmetic operations for the position update function

Additions and subtractions Multiplications Divisions

Number of arithmetic operations 8 12 3
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Table 2 gives an overview of the total number of

arithmetic operations needed to compute the force be-

tween two balls in contact.

2.3. Velocity and co-ordinate update

Once the resultant forces of each ball are calculated

by summing the forces of all contacts in vectorial form

for every ball, these forces can be used to find the new

accelerations using Newton’s second law. This requires

only OðNÞ operations and this is the fastest of all three

calculations within one time step to be performed.

The number of arithmetic operations involved is

given in Table 3.
3. Field Programmable Gate Arrays

The complexity of Field Programmable Gate Arrays

(FPGAs) is continuously increasing, and, state of the art

FPGAs now have up to 10 million system gates, with up

to 10 Mbit of embedded RAM. One promising appli-

cation area for these devices is to form FPGA-based

reconfigurable co-processors within standard comput-

ers, which can be used for algorithm acceleration [8,9].

For the right type of application, such a reconfigurable

computer can rival the expensive parallel computers that

are normally used to accelerate computationally expen-

sive algorithms.

The DEM has properties that may be suitable for

acceleration using FPGAs:

• It exhibits an enormous degree of parallelism

• It uses very simple arithmetic operations
4. Hardware implementation of the DEM on a reconfig-

urable computing platform

4.1. Reconfigurable computing platform

The reconfigurable computing platform used in this

current work was a PC reconfigurable computing PCI

plug-in card. The card was a Celoxica RC1000-PP PCI
card containing a single Xilinx Virtex 2000E-6 FPGA

with 4 banks of 2 Mbytes of RAM. The RC1000-PP

hardware platform is a standard PCI bus card. It has 8

Mb of SRAM directly connected to the FPGA in four

32-bit wide memory banks. The memory is also visible

to the host CPU across the PCI bus as if it were normal

memory. Each of the 4 banks may be granted to either

the host CPU or the FPGA at any one time. Data can

therefore be shared between the FPGA and host CPU

by placing it in the SRAM on the board. It is then

accessible to the FPGA directly and to the host CPU

either by DMA transfers across the PCI bus or simply as

a virtual address. The board is equipped with two

industry standard PMC connectors for directly con-

necting other processors and I/O devices to the FPGA; a

PCI–PCI bridge chip also connects these interfaces to

the host PCI bus, thereby protecting the available

bandwidth from the PMC to the FPGA from host PCI

bus traffic.

A more detailed view of the RC1000-PP architecture

is shown in Fig. 1 block diagram.

4.2. System description (software and hardware HW

partition)

The first task once the simulation is started (for the

software and the hardware simulator) is that the soft-

ware reads an initialisation file where the system data is

stored. It then generates the requested particles and once

it finishes it waits for the simulation to run. This ini-

tialisation section is performed by the program for both

the software and the hardware implementation. Fig. 2

shows a system layout.

Once the particles are generated the user has the

option to choose if the user wants to run the simulation

in software or hardware. The user can decide to run the

simulation in software i.e. on the PC’s microprocessor or

run it on hardware i.e. on the reconfigurable computing

PCI board.

4.3. Hardware implementation

In order to exploit the parallelism of the DEM the

four major tasks (contact checking, forces update,



Fig. 1. RC1000 block diagram.

Fig. 3. FPGA internal block diagram.
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position update and reboxing) need to be performed in

parallel.

Fig. 3 shows the internal structure of the design. It

consists of six main units:

• A control unit, which synchronises all the units and

generates all the control and address signals.

• A contact check unit, which identifies the particles in

contact.

• A force update unit, which updates the interparticle

forces.

• A movement update unit, which calculates the parti-

cles’ new velocities and coordinates.

• An interface unit to read/write data to and from the

external memory.

• A write back unit to write the results of the arithmetic

units back to the internal FPGA memory.
Fig. 2. System
The embedded FPGA memory (block RAM) is used

to hold the data required to describe each particle. This

includes position, velocity, rate of angular rotation,

identity of neighbours, and the force that it is experi-

encing.
diagram.
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Each unit of this implementation will be described

into detail in the following subsection.
4.3.1. Control unit

The control units generate the necessary control sig-

nals to synchronise data between the blocks, and to steer

the data output from the RAMs through the switch

array to the inputs of the appropriate computation unit.

The control units also generate the addresses to read and

write data back to the internal and external memory.
4.3.2. Contact check unit

For each particle, a ‘‘contact list’’ is formed, which

contains references to each of the particles with which it

makes contact. In order to detect if two particles are in

contact Eq. (1) has to be solved. If the condition of Eq.

(1) is true, the addresses of the two particles are added to

each others’ adjacency list. For this investigation, all

particles are assumed to having the same radius R.
Under this circumstance, simple geometry shows that

for a 2-D simulation, the maximum number of contacts

that each ball can have is 6. This means that contact

information can be represented by a very simple data

structure, in which each particle has six memory slots

allocated to hold the identities of the particles poten-

tially in contact.

If there are N particles within a region of the DEM,

then the number of contact checks that must be per-

formed is N 2. The square roots and multiplications used

in Eq. (1) are very expensive to perform in FPGA

hardware, with the implication that a full contact check

would be prohibitively expensive.

Instead of checking for true contacts, it was decided

to check which particles are within each others’

bounding boxes and this acts as a filter before the actual

contact check. Under some circumstances (see Fig. 4),

this means that a pair of particles will be classified as

neighbours even though they are not truly in contact.

This causes no real problem, since it is detected and

correctly handled by the force increment unit.

With the use of a bounding box check as a filter

makes the contact check unit very cheap in terms of

hardware utilisation, as it requires only two additions,

two subtractions and four comparisons.
( )

Fig. 4. Neighbour check model.
4.3.3. Inter-particle forces increment

Once the contact list for a particle has been estab-

lished the total force acting on it can be determined. This

will require a full solution of Eq. (1) for each contact

identified, but this will be needed to be performed only a

maximum of 6N times.

For every contact identified between two particles,

the resulting force is calculated. For this study, a simple

force–displacement law is adopted therefore the result-

ing force between two balls is directly proportional to

the indentation between the balls.

The resultant force on a particle is the vector sum of

the forces caused by each contact with its neighbours.

The force update unit, which does require the compu-

tation, requires a large amount of hardware. It also

operates at comparatively low clock speed of 7.5 MHz,

because of the multipliers, in contrast to the contact

check unit which works at the fully systems clock speed

of 30 MHz (four times the clock speed of the forces and

position update unit). Fig. 5 shows the internal structure

of this unit, where each column represents one pipeline

stage.

It can be seen that there are three main paths in this

structure. One that calculates the forces in the x direc-

tion, the other that calculates the forces in the y direction
and another shorter one, which computes the terms in

Eq. (1), to check if the particles are in contact.

In order to compute the sine and cosine of the angle

of the triangle formed by the union of the particles’

centroids a Look Up Table (LUT) is used instead of

having to compute them using a square root, which is

very expensive in terms of HW resources (see Eqs. (2)–

(4)).

sin ¼ y2 � y1
d

ð2Þ
cos ¼ � x2 � x1
d

ð3Þ

with

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ2

q
ð4Þ

LUTs can be implemented easily in FPGAs and do take

far less logic resources than a square rooter. Pre-defined

values of the cosine and sine are stored in this table.

The sine and cosine are needed to decompose the

forces from x and y direction to normal and tangential

components of the contact.

4.3.4. Velocity and position update

Once the resultant force on each ball has been cal-

culated, these forces are used to find new accelerations

using Newton’s second law. In this study, it is assumed

that the masses of all the balls are identical. These
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Fig. 5. Forces update unit internal structure.
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accelerations are integrated to obtain the velocities in the

x and y direction and the angular velocity.

The new coordinates can be found by adding the

original coordinates to the incremental displacement

obtained by integrating the calculated velocities. This

unit has an intermediate level of hardware complexity,

and operates at the same speed as the force update unit

(7.5 MHz), which is four times slower than the system

clock in order to have its pipeline fully loaded, achieving

one new result per clock cycle.

It consists of three pipelines in parallel (see Fig. 6) in

parallel. In the first one x and vx are computed, y and vy
are calculated in the second and h and h� in the third

one.
Fig. 6. Position update unit internal structure.
4.3.5. Write back unit

The task of this unit is to merge particle data pro-

duced by the computational units, and to write it back to

the appropriate locations in the internal memory.
4.3.6. Interface unit

The interface unit handles communication between

the FPGA’s internal memory and the external memory

on the board. The data of one subdomain is written

back to the external memory once the position update

unit has finished and new data for the next sudomain is

read into the FPGA memory.
4.3.7. Hardware requirements

The hardware requirements for each of the main

functional units are shown in Table 4. Constant coeffi-

cient multipliers (KCMs) require much less hardware

resource than multipliers that allow both inputs to vary.

Having balls of the same radius gives large savings in

hardware resource, since all the multiplications involv-

ing the radius can be achieved by KCMs rather than full

multipliers.

The contact checking unit is very simple, requiring

little hardware resource, and capable of operation at

high clock speeds. The force update unit, which does

require the computation of the terms in Fig. 5, requires a

large amount of hardware. The movement update unit

has an intermediate level of hardware complexity.
4.3.8. Working mechanism

In order to allow the computational units to operate

in parallel, the domain is decomposed into X vertical



Table 4

Hardware requirements

Contact checking Force update Movement update

2 adders 20 adders 8 adders

2 subtractions 10 multiplications 15 KCM

8 KCM

1 divider

1 Look Up Table

(LUT)

Fig. 7. Domain decomposition.

B. Carri�on Sch€afer et al. / Computers and Structures 82 (2004) 1707–1718 1713
columnar sub-domains (cells), as shown in Fig. 7. Each

particle belongs to a particular cell, and for most par-

ticles contact checking and force updating need only be

performed against the other particles within the same

cell. For the small number of particles that are close to

the boundary between two cells, more complicated

arrangements are necessary.

The architecture divides the internal block RAM of

the FPGA into six dual port RAMs. At any given time,

six of the columnar cells shown in Fig. 7 are stored

within the dual port RAMs shown in Fig. 3, and

undergo processing. The RAM contains two 256 bit

entries for each particle within that cell consisting of 16

bit entries for x, y, q, vx, vy , q0, Fx, Fy , M , a type flag, and

the reference of up to six neighbouring particles and

another to hold the normal and shear forces for every

contact (with a maximum of six balls in contact).

Due to complexities associated with handling parti-

cles close to the cell boundaries, the contact check unit

may have to update the columns to the left and the right

of the column that is currently undergoing contact

check, as the contact check unit also deals with particles

that have transitioned from one column to another. It

deletes the particles, which have moved from the column

where the contact check is taking place and moves them

either to the right or left column, depending on where

the particle has moved. Also, the force update unit may

have to interact with the column to the right of the

column currently undergoing force update, as a particle
in this column might be in contact with particles in the

neighbouring column. That is why the FPGA must hold

six columns at any given time, rather than three.

4.3.9. Adaptive cell boundaries

A complication appears as simulation progresses.

Particles will move between columns, and some columns

may become heavily populated, whilst others are spar-

sely populated. It is then necessary to move the cell

boundaries, thus expanding some cells and contracting

others. This is needed in order to provide good load

balancing, and also to prevent overflow of the block

RAMs.

Movement of cell boundaries is fairly simple. The

control unit monitors how many particles are held in

each block RAM. When the number falls below a

minimum threshold or rises above a maximum, the

boundary is moved by a distance R so as to expand or

contract the cell. When the boundary moves, a number

of cells will find that their data is stored in the wrong

column of RAM, but this will be automatically detected

and corrected by the mechanisms described earlier for

handling particles close to boundaries.

Using the procedures described above, the transition

of particles from one cell to another is handled without

causing any loss of performance. Also, the cell size is

adaptively optimised so that good load balancing is al-

ways achieved.

The XCV2000E can only hold a maximum of 128

particles per column, because part of the FPGA’s

embedded RAM has to be allocated to other functions

to make the design fit. If a sub-domain were to acquire

more than 128 particles, the excess particles would be

discarded, leading to the loss of particles from the sys-

tem. This is avoided by dynamically balancing the load

in each sub-domain so that no more than a certain

maximum number (always smaller than 128) will be in

each sub-domain. The software program will also issue a

warning signal if the danger of having more than 128

particles in a sub-domain exists, for example when the

domain height compared to the balls radii is so large

that more than 128 balls would fit in one column.

With contact checking, force updating and co-ordi-

nate updating being performed in parallel, load bal-

ancing problems will inevitably appear, since the overall

system speed will be limited by the speed of the slowest

of the three units. As shown in Section 2, where the

DEM was described in detail, the co-ordinate check is

the most time consuming, but requires very simple

hardware and can operate at high clock speed.

In order to improve the load balance, more than one

contact check units are instantiated, and operate in

parallel. The number of contact checks to be used is a

parameter of the design, which can be easily changed.

The contact check control unit can generate all the re-

quired control signals to steer the data correctly between



 

Fig. 9. Timing for each unit.
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the different check units. Lastly, the contact check units

can run at four times the clock speed (30 MHz) of the

force update unit and co-ordinate update unit (7.5

MHz), because it is very simple, requiring little hardware

resource.

It can also be seen that the coordinate update unit

will finish much earlier than the forces update unit. The

spare time available at the end of the coordinate update

is used to write the data from the block of RAM cor-

responding to co-ordinate update that has now finished

being processed for this time step, into external RAM. A

new set of data is also read from external RAM, which

corresponds to the next column of the domain that is to

be processed. The ideal timing schedule is show in Fig. 8.

In this way, writing to and reading from external

RAM can be fully overlapped with computation, and

the number of particles that can be processed at full

speed is limited only by the size of the external RAM.

This means that problems containing tens of millions of

particles can be processed easily.

In order to have the system running at its maximal

efficiency there must be as many contact check units as

needed to make the time for position update and data

update (t(position) + t(interface)) equal to the time for

contact checking t(cc). Fig. 9 illustrates the number of

contact check units needed, using theoretical calcula-

tions, for the above condition to be true.

The straight line for t(position) + t(interface) is the

number of clock cycles required to perform position

update plus the time needed to write and read new data

to and from the external memory, for all particles in one

column. The curves t(cc) show the number of clock cy-

cles needed to perform contact checking, for varying

numbers of contact check units (ccu). Where the t(cc)

curve intersects with the t(position) + t(interface) line,

this indicates the ideal load balancing for that number of

particles. So, for example, a simulation of almost 175

particles/column has almost ideal theoretical load bal-

ancing when five contact check units are instantiated.

The time needed to perform the contact check de-

pends not only on the number of particles per column,

but also on the domain topology and the size of the

particles. The larger the height of the domain Y is, the

larger the contact area is. Also the smaller the radius of
 

Fig. 8. Task scheduling.
the particles is, the more particles need to be checked for

contacts with the neighbouring column. Fig. 9 is given

for a particular value of Y =d with Y being domain height

and d balls’ diameter.

4.3.10. Validation of the design

In order to validate the hardware implementations a

debugger was incorporated into the software environ-

ment in order to compare the behaviour of the software

and the hardware design. The debugger is capable of

running software and hardware simulations simulta-

neously, and displaying both sets of results on screen for

the current simulation cycle. The debugger also com-

putes and displays various measures of the difference

between both sets of results, e.g. the difference between

particle coordinates, the average velocity difference and

the difference in system centroid.

Due to the difference between the 16 bit fixed point

data format of the hardware design and the 32 bit

floating point format of the software, the motions of

individual particles differ slightly. Rounding errors in

the hardware data format make the particles move

slightly slower than in the software version. However,

the overall behaviour of the assembly remains unaltered.

Since users are usually interested in the behaviour of the

bulk, and not of the individual particles, for most

practical purposes the accuracy of the hardware simu-

lation can be regarded as being as good as that of the

software simulation.
5. Software and hardware comparison

There are many ways to evaluate the performance of

a parallel algorithm, and a very common way is to

compare the runtime of the sequential algorithm and the

same implemented on a parallel machine, optimised as

much as possible for that parallel machine



Table 5

Run time comparison for hardware (HW) and software (SW) implementations

No. of particles 50 000 75 000 100 000 125 000 150 000 175 000 200 000

TSW (s) 1800 2485 3120 3920 5156 6123 7423

THW (s) 51 80 103 130 175 196 245

Speedup 35.3 31.0 29.8 30.2 29.5 31.2 30.3
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speedup ¼ Runtime of the fastest sequential algorithm
Runtime of the parallel algorithm

ð5Þ

The runtime of an optimised software simulator will be

compared with the hardware implementation in the next

section.
5.1. Simulations

An experiment was set up in order to measure the

effectiveness of the hardware design. Domains with

50,000, 75,000, 100,000, 125,000, 150,000, 175,000, and

200,000 particles were generated and simulated for 1000

time steps.

The performance of the software version was mea-

sured and compared with the results obtained by the

hardware version. The software version used an optimal

domain decomposition in order to minimise its simula-

tion time. The initial velocities of the balls were initia-

lised pointing towards the centre of the domain.

Table 5 shows a comparison between the speedup

achieved by the hardware simulation run at 30/7.5 MHz

(30 MHz for the contact check and interfacing with the

external memory and 7.5 MHz for the forces and posi-

tion update units) as compared to the software.

Fig. 10 shows graphically the achieved speedup.

Section 4.3.9 showed that for a maximum of 125

balls/column (limited by the FPGA’s internal RAM) the
Fig. 10. Speedup measurements.
position update and the read and write operation of new

data to the external memory was the bottleneck of the

design, as it takes longer than the time required by

contact check.

The maximum number of balls that can be stored per

column in the FPGA being only 125 has no influence in

the total execution time as the only deep pipelines are in

the force update unit, which is not time critical.
5.2. Discussion of the results

The hardware implementation has accelerated the

simulation by a factor of 30. This shows that the hard-

ware implementations makes full use of the intrinsic

parallelism of the DEM, as it runs at a comparatively

slow clock speed 30/7.5 MHz, compared to the PC

microprocessor.

The hardware implementation will always take the

same time to simulate a system with the same number of

particles, since it works as fixed-cycles state machines,

thus the computation time will grow linearly with the

number of particles in the system. The software imple-

mentation run time, on the other hand, will depend on

other factors. The most important is probably the stiff-

ness. The lower the stiffness the more contacts are gen-

erated and the more often the resultant forces need to be

computed for each particle. If the stiffness is large en-

ough the system will behave like a billiard table, thus

contacts will happen only during a very short time in

each time step. Therefore the stiffness selected in the

simulations will affect the speedup that hardware

achieves over software. For high stiffness values, the

software runtime is low, so the speedup achieved is re-

duced. In order to provide a conservative estimate of the

speedup achievable by the hardware, the stiffness value

used in the simulations of Fig. 10 was set to the maxi-

mum allowed by the 16-bit data arithmetic used.

Selecting a lower stiffness value would give even better

speedup results.
6. Scalability of the hardware implementation

A hardware implementation of the 2-D DEM on one

single FPGA has shown a speedup of a factor of 30. This

might be enough for some simulations, but in the case of

entire engineering structures, millions of particles are
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involved. In order to model these structures an even

higher speedup is needed. The only way to achieve

speedups of some orders of magnitude bigger than what

has been achieved is to have multiple FPGAs working in

parallel.

A very important aspect of the hardware implemen-

tation presented in this paper is how well it will scale on

a multiple FPGA system. Will the speedup be linear with

the number of FPGAs or will communication, syn-

chronisation overheads and load balancing problems

degrade the overall FPGA speedup considerably as in

the multiprocessor systems?

The term scalability tries to express the benefit of

solving large problems on a multiple processing element

system. The algorithm is scalable if the efficiency is more

or less constant, where the efficiency is defined as the

speedup divided by the number of processing units.

This section will describe a multiple FPGA imple-

mentation based on two RC1000 boards connected in

parallel. The domain decomposition method used facil-

itates the spreading of the simulation across multiple

FPGA boards with minimal communications overhead,

which means that near linear speedup can be achieved. It

will be shown that this implementation allows the full

overlap of computation and communication between

boards.
6.1. System description

Fig. 11 shows a diagram of a distributed memory

system containing N RC1000 boards. Each board con-

tains an FPGA, whose block RAM is organised as six

dual-port RAMs, each of which is to be used to contain

the data for a sub-domain. This data could be swapped

in and out of four banks of static RAM present on each

RC1000 board. The boards communicate with one an-

other across the PCI bus. As long as the amount of data
Fig. 11. Multi-FP
being transferred across the PCI bus between the boards

remains small, linear speedup can be expected as more

FPGA boards are added.

Initially the domain is split across the boards so as to

equalise the workloads. After one time step is com-

pleted, each board needs to exchange its rightmost col-

umn including the data structures that catch particles

transitioning across sub-domain boundaries, with its

right hand neighbour. Similarly each board must ex-

change its leftmost column with its left hand neighbour.

If this transfer can be completely overlapped with

computation, then none of the computational pipelines

on the FPGAs ever need stall, and speedup should be

linear, i.e. use of N boards should provide N times

speedup in comparison to a single board.

The data for each particle in two dimensions consists

of 34 bytes with 2 bytes each for x, y, vx, vy , plus the

normal and shear force at each contact, which for the

worst case are another 12 items for particles of the same

radius. The number of particles in a column is limited to

128 in order to avoid overflow of the block RAM. The

load balancing method introduced in Section 4.3.9 will

adaptively reduce the size of any domain that has its

number of particles approaching this limit. So for N
boards, the maximum amount of data to be transferred

across the PCI bus for each time step of the DEM

method is 34 � 128 � 4 � N bytes¼ 1741N KBytes. The

factor of 4 in the previous calculation arises because two

columns (left and right-most column) have to be read

from each FPGA and two have to be written in the

FPGA. Eq. (6) gives the general expression for the

amount of data that must be transferred between two

boards for each time step.

Datatransferred
¼ nrof parameters � 2Bytes� max balls col

� 4� nr boards ð6Þ
 

GA system.
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Fig. 12. Multi-FPGA system.
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Within each board, the FPGA uses one RAM bank at a

time. Transfer of edge data to an adjacent board can be

initiated when a bank of memory is released by the

FPGA. The transfer must be completed before the

FPGA attempts to re-acquire that bank, which occurs

after it has finished processing the contents of the other

three RAM banks on the board (see Fig. 12). This

amounts to a period of time as shown in Eq. (7), where

t1column is the time needed to compute 1 sub-domain. The

slowest operation in the processing of a sub-domain

containing M particles is the position update and data

transfer. The time tpos data transfer, taken for this operation

for 1 time step is shown in Eq. (8), where f is the fre-

quency at which the FPGA works.

The number of sub-domains contained in each RAM

is shown in Eq. (9) for the 2 MByte memory available on

the current FPGAs.
tdata transfer ¼ 3� t1column � nrcols=RAM ð7Þ
tpos data transferð1cycleÞ ¼ 6M þ 17�M
2

� 1

f ½Hz� ð8Þ
Table 6

Run time comparison for hardware and software implementations

No. of particles 50 000 75 000

Speedup (1 board) 35.3 31.0

Speedup (2 boards) 54.0 55.2
Nrcells=mem unit

¼ 2 Mbytes
Max nr balls1col � Ball parameters� 2Bytes

ð9Þ

The boards are capable of sustaining DMA transfers

across the PCI bus at about 12 Mbytes, which means

that saturation of the bus will not occur for a number of

boards N below about 282. This means that if ideal load

balancing is achieved then speedup can be expected to be

linear for a number of boards up to that number.

6.2. Simulation results

The average speedup for a single FPGA system was

around 30 in comparison to the optimised software

version running on a Pentium III processor with 1.3

Gbytes of RAM. It is therefore reasonable to expect a

speedup of around 60 with a two-board system, as

communication overheads should not influence the

computing time, as computation and communication

are completely overlapped.

The hardware simulation for a system with two

boards gave a result slightly worse than the expected

linear speedup of 60, as shown in Table 6. This is due to
125 000 125 000 150 s000

29.8 30.2 29.5

54.7 53.7 54.9
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the synchronisation of the FPGAs needed after every

cycle. The fastest FPGA needs to wait for the slower

ones to complete their computation; therefore it is

impossible to have a completely balanced system.
7. Conclusions

A completely new approach to the acceleration

of the DEM computation has been presented in this

paper. Previous approaches were based on multipro-

cessor systems. Their speedups were far less than linear,

because of communication and synchronisation over-

heads as well as load balancing problems. This novel

approach exploits the intrinsic low and high-level par-

allelism of the DEM by scheduling the arithmetic

operations in parallel and by decomposing the domain

so that the four main tasks: contact checking, forces,

position updating and re-boxing, can be performed at

the same time. A speedup of a factor of 30 for a single

FPGA, compared to an optimised software version

running on a fast PC, has been demonstrated and of

almost 60 for a multi-FPGA system based on two

RC1000 boards connected in parallel via the PCI bus,

allowing communication and computations to fully

overlap.
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